# Status assessment and planning for water security in Mokhada Block

4 January 2019

Technology and Development Solutions Cell (TDSC)

Centre for Technology Alternatives for Rural Areas (CTARA)

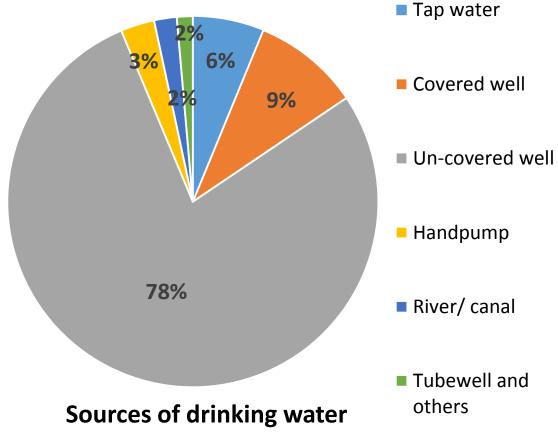
Indian Institute of Technology Bombay, Mumbai

## Content

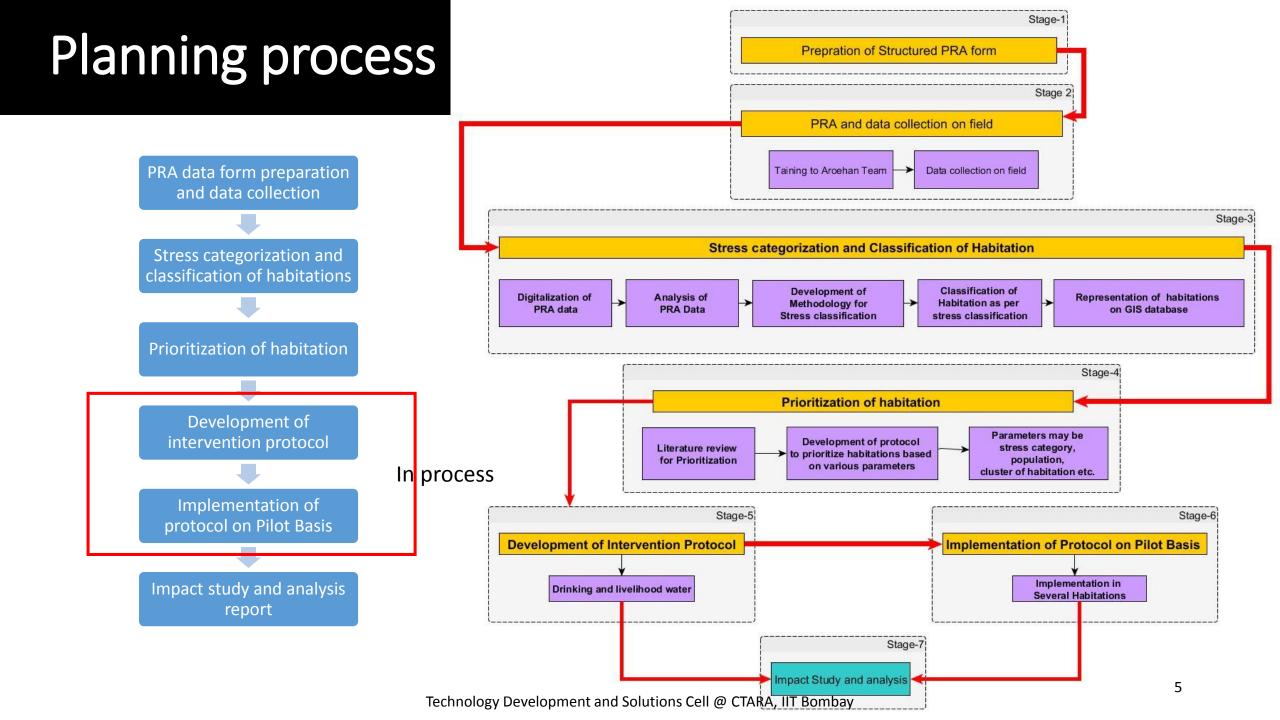
- Objectives of the study
- Water status of Mokhada taluka
- Planning process
- Parameters for stress categorization
- Stress categorization at village level
- Habitations selected for study
- Intervention planning protocol design
- Case studies

# Objectives of the study

An effort to evolve holistic approach towards regional resource planning


- Block as a planning unit
- Using water security as an anchor
- Can be extended towards other sectors such as energy, health, education etc.

#### **Objectives of the present study**

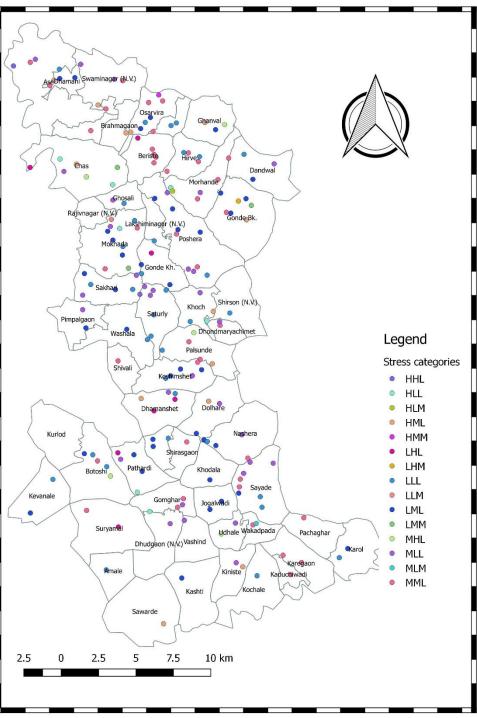

- 1. To get a taluka wide perspective of water security and identify stress/ challenges
- 2. To develop and design standard intervention protocols
- 3. Implement the protocol on pilot basis and study its impact thereafter.

# Water status of Mokhada taluka

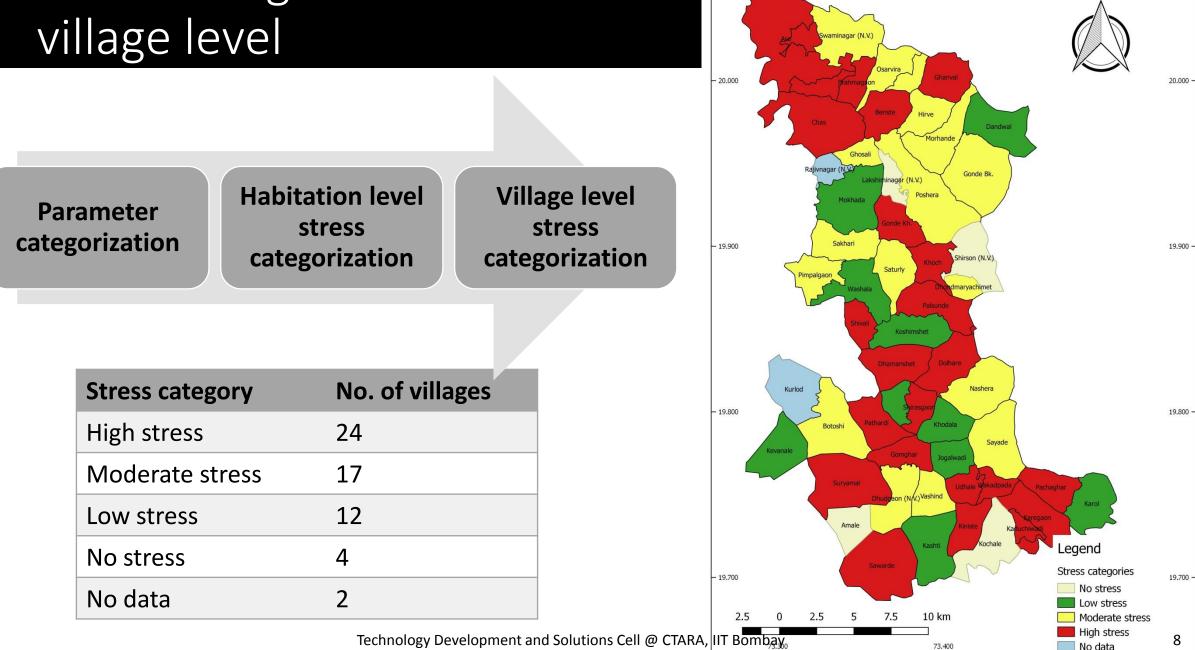
- Administrative details: 27 Gram panchayats + 1 Nagar Panchayat, 59 villages and 236 habitations.
- Geographical Area: 494.83 km<sup>2</sup>, mostly hilly
- **Population:** 83453 People (17789 HH)
- Source of drinking water: Ground water
- Avg. Annual Rainfall: 2300mm
- High surface runoff and poor groundwater recharge
- Stage of ground water development ~5%, but habitations go dry after Feb.



**Ref:** Census 2011, Thane District. http://maharain.gov.in/




# Parameters for stress categorization


| Information from PRA                             | Principal features  | Category  | ]                              |
|--------------------------------------------------|---------------------|-----------|--------------------------------|
| Availability                                     |                     |           |                                |
| 12 month availability of water                   | Throughout the year | Low       |                                |
| Not available in April & May                     | 10 Month            | Moderate  |                                |
| Available for few months after monsoon           | Less than 10 months | High      |                                |
| Accessibility                                    |                     |           |                                |
| Plain terrain, Pakka road                        | Good                | Low       | ] Importance within parameters |
| Moderate slope, Pakka road/ paulvat              | Fair                | Moderate  | Availability> Accessibility>   |
| Plain terrain, paulvat                           |                     | wouldtate |                                |
| Steep slope, Pakka road/pavulvat/ dangerous road |                     |           | Quality                        |
| Pain terrain, dangerous road                     | Tough               | High      |                                |
| Moderate slope, dangerous road                   |                     |           |                                |
| Quality                                          |                     |           |                                |
| Good                                             | Good                | Low       |                                |
| Bad or Non-potable                               | Bad                 | Moderate  |                                |

# Habitation level stress categories

|                     | Sr. No | Availability | Accessibility | Quality | Category | Stress type |
|---------------------|--------|--------------|---------------|---------|----------|-------------|
|                     | 1      | L            | L             | L       | LLL      | No stress   |
|                     | 2      | М            | L             | L       | MLL      | Moderate    |
|                     | 3      | Н            | L             | L       | HLL      | High        |
|                     | 4      | L            | М             | L       | LML      | Moderate    |
| Out of 18           | 5      | М            | М             | L       | MML      | Moderate    |
| identified stress   | 6      | Н            | М             | L       | HML      | High        |
| categories, only 15 | 7      | L            | Н             | L       | LHL      | High        |
| categories were     | 8      | М            | Н             | L       | MHL      | High        |
| observed in         | 9      | Н            | Н             | L       | HHL      | High        |
| Mokhada Taluka      | 10     | L            | L             | М       | LLM      | Low         |
|                     | 11     | М            | L             | М       | MLM      | Moderate    |
|                     | 12     | Н            | L             | М       | HLM      | High        |
|                     | 13     | L            | М             | М       | LMM      | Moderate    |
|                     | 14     | М            | М             | М       | MMM      | Moderate    |
|                     | 15     | Н            | М             | М       | НММ      | High        |
|                     | 16     | L            | Н             | М       | LHM      | High        |
|                     | 17     | М            | Н             | М       | МНМ      | High        |
|                     | 18     | Н            | Н             | М       | ННМ      | High        |

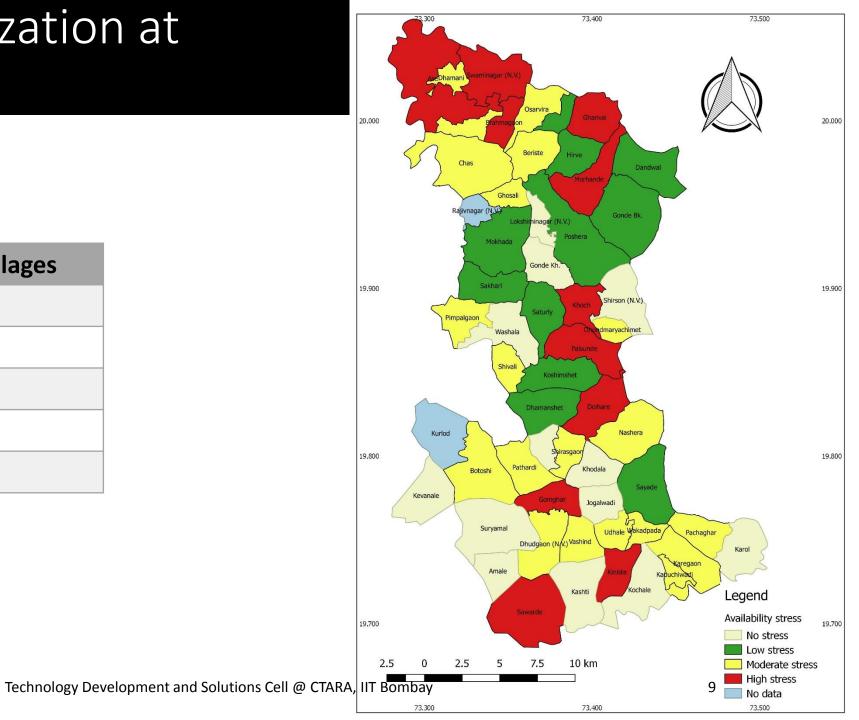


# Stress categorization at



73.400

73.500

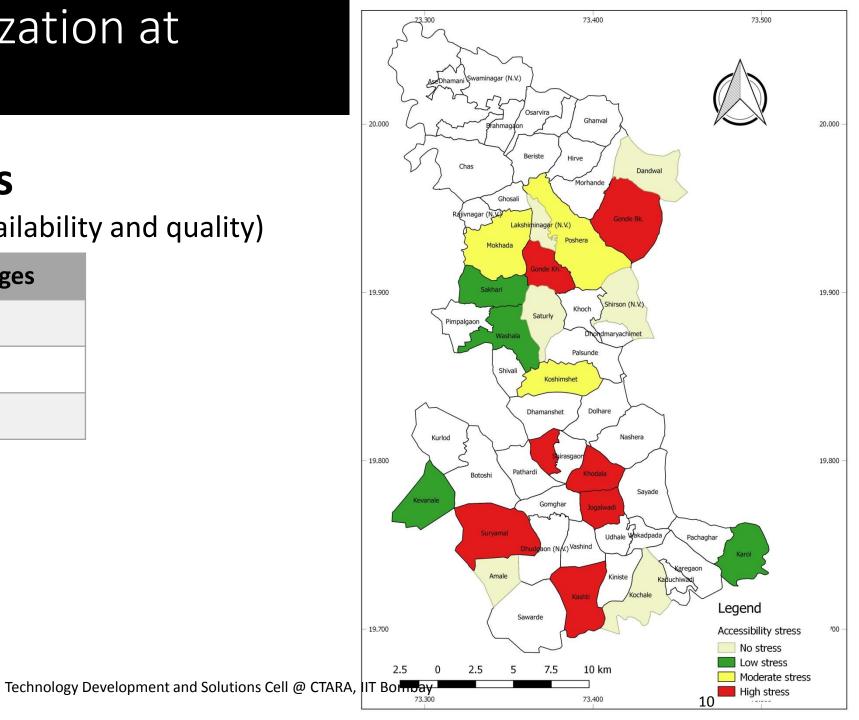

73.300

Technology Development and Solutions Cell @ CTARA, IIT Bombay

# Stress categorization at village level

### **Availability stress**

| Stress category | No. of villages |
|-----------------|-----------------|
| High stress     | 11              |
| Moderate stress | 20              |
| Low stress      | 11              |
| No stress       | 15              |
| No data         | 2               |



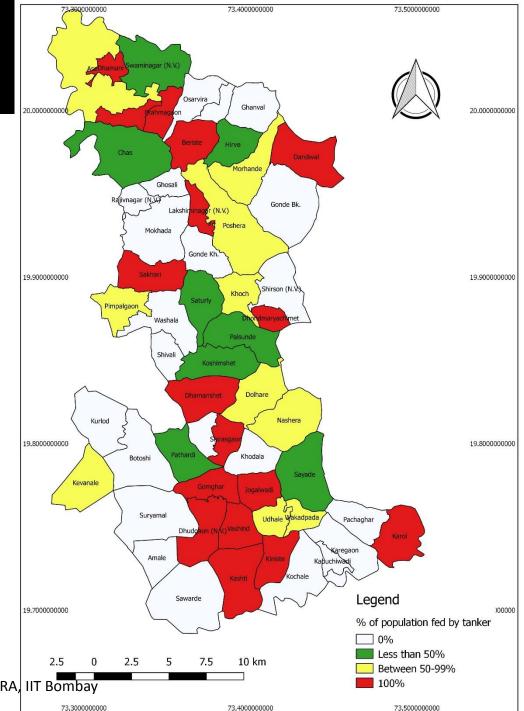

# Stress categorization at village level

#### **Accessibility Stress**

(No or Very low stress of availability and quality)

| Stress category | No. of villages |
|-----------------|-----------------|
| High stress     | 7               |
| Moderate stress | 3               |
| Low stress      | 4               |




### Stress categorization at village level

#### Tanker fed villages (for last two years)

| Stress category<br>(% of population) | No. of villages |
|--------------------------------------|-----------------|
| 100%                                 | 17              |
| 50-99%                               | 10              |
| Less than 50%                        | 10              |
| 0%                                   | 22              |

Ref: Tanker fed list provided by RWS department, Mokhada

Technology Development and Solutions Cell @ CTARA, IIT Bombay



73.4000000000

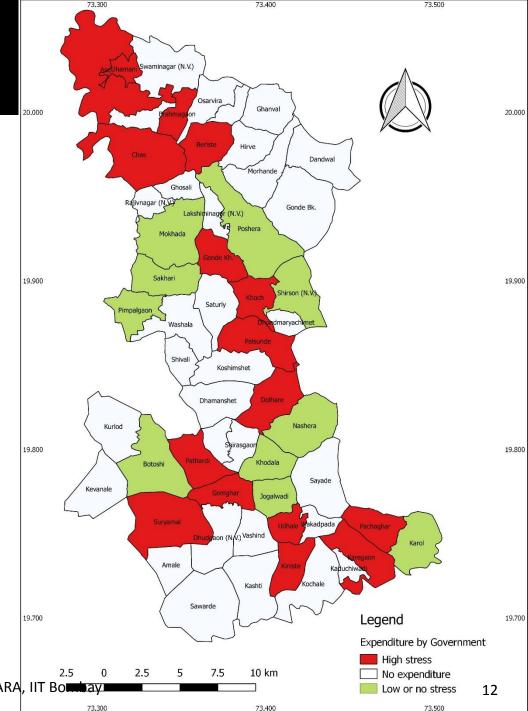
73.500000000

# Stress categorization at village level

### **Expenditure by Government**

on NRDWP and JYS programs in last three years

| Expenditure              | No of Villages |
|--------------------------|----------------|
| Significant expenditure* | 27             |
| Meager expenditure       | 32             |


| Stress category    | No. of villages |
|--------------------|-----------------|
| High stress        | 17              |
| Not in high stress | 10              |

Inspite of spending lakhs of rupees by government, 17 villages are in high stress category.

\* Significant expenditure means spending more than around 20 lakhs per village

**Ref:** NRDWP report of year 2013-2016. Jalyukt Shivar report of year 2014-2015

Technology Development and Solutions Cell @ CTARA, IIT Bo



# Habitations selected for study

- Out of 3 Gram panchayat, 27 habitations are selected
- All selected habitations have **high stress**, except habitations of Kevnale village
- Population benefited~ 10,600

| lected              | Gram Panchayat           | Village Name                       | Habitation Name     | Population  | Stress Category |
|---------------------|--------------------------|------------------------------------|---------------------|-------------|-----------------|
|                     |                          |                                    | Dongar wadi         | 475         |                 |
|                     |                          |                                    | Pathardi 1          | 320         |                 |
|                     | Botoshi Pathardi         | Pathardi                           | Pathardi 2          | 278         | High stress     |
|                     |                          |                                    | Pathardi- Patilpada | 320         |                 |
|                     |                          |                                    | Dhindewadi          | 126         |                 |
|                     |                          | Kevnale                            | Bhavaniwadi         | 324         | Low stress      |
|                     | Suryamal                 | Revitare                           | Kevnale             | 503         | LOW STICSS      |
|                     |                          | Suryamal                           | Suryamal            | 860         | High stress     |
|                     |                          |                                    | Aase                | 718         |                 |
|                     |                          |                                    | Bhoirpada           | 95          |                 |
| abitations          |                          |                                    | Bival pada          | 197         |                 |
| abitations          |                          |                                    | Dapati 1            | 430         |                 |
|                     |                          |                                    | Dapati 2            | 275         | High stress     |
| ich atroac          |                          | Aase                               | Dhamodi             | 203         |                 |
| igh stress,         |                          |                                    | Ikharicha pada      | 256         |                 |
| village             |                          |                                    | Karoli              | 397         |                 |
|                     |                          |                                    | Kolhedev            | 337         |                 |
|                     |                          |                                    | Kudava              | 370         |                 |
| Aase                | Aase                     |                                    | Kunbhipada          | 405         |                 |
|                     |                          |                                    | Rautpada            | 262         |                 |
|                     |                          |                                    | Warghpada/Bhoirpada | 33          |                 |
|                     | Bramhangaon              | Bramhangaon                        | 719                 | High stress |                 |
|                     |                          | Dhamani                            | Dhamani             | 262         | High stress     |
|                     |                          | Shastri nagar                      | Kundyacha pada      | 694         | High stress     |
|                     |                          |                                    | Bhowadi             | 687         |                 |
| Technology Developm | ent and Solutions Cell @ | Swami nagar<br>@ CTARA, IIT Bombay | Navlyahapada        | 341         | High stress     |
|                     |                          |                                    | Swami nagar         | 737         |                 |

# Intervention planning protocol design

- 1. Status assessment of existing assets and its demarcation
- 2. Quantification of need for planning
- 3. Identification of existing assets for interventions
- 4. Intervention to reduce stress
- 5. Standard design and criteria for suitable location

### Status assessment of existing assets and its demarcation

- 1. Verification of PRA data and stress categories.
  - i. Baseline data collection
    - Dimensions
    - Physical condition
    - Utility (drinking/domestic/irrigation)
    - Availability of water in term of months and distance of source from habitation or potential area
- 2. Demarcation/identification of existing built assets (well/CNB)
- 3. Demarcation of available perennial source (stream/river)

# Quantification of need for planning

- 1. Current Requirement
  - i. Drinking water Adequate quantity (40 lpcd) of water with acceptable quality is available within habitation.
  - ii. Livelihood water Adequate quantity of water (depend on crop, livestock) is available
- 2. Gap Analysis
  - i. Drinking water
    - Availability Water is not available for few months from any existing source
    - Issue of accessibility water is available but people have to fetch longer distance
    - Issue of quality Visually found not fit for drinking
  - ii. Livelihood water
    - Availability Water is not available for second crop or livestock
    - Accessibility Water is available but difficulty in accessibility
- 3. Identification of possible interventions for sustainable approach
  - i. Suitable area treatment and drainage treatment measures

# Identification of existing assets for interventions

- 1. In case reviving existing asset
  - i. Verification of existing asset w.r.t. possible repair/ desilting/ nonstructural interventions to repair/ revive source structure or recharge structure
  - ii. Availability for 12 months but accessibility/quality issue that is in resolvable condition
  - iii. Availability for less than 12 months but intervention at asset level is possible by adding a new recharge structure
- 2. In case of building new asset
  - i. Construction of new well
    - Suitable location criteria
  - ii. Construction of new CNB
    - Suitable location criteria

## Interventions to reduce stress

#### 1. Drinking and domestic water

- i. Availability
  - Sustainability measures (for making water available for longer duration and for ground water recharge)
    - Repair of existing bund if there are some minor leakages or partial damages
    - Construction of subsurface bund (SSB)
    - Construction of cement nala bund (CNB)
    - Construction of water harvesting structures
  - Repair and revival of existing structure
    - Repairing/ Renovation of existing well
    - Deepening of well
    - $\circ$  Desilting
- ii. Accessibility
  - Construction of pathways
  - Pumping of water from source to habitation
- iii. Improving water quality
  - Providing a protection net to avoid falling of leaves/ bird droppings in well
  - In case of eutrophication, identifying the cause and resolving the issue at source
  - In case of turbidity, improving quality by providing water filter, etc.

## Interventions to reduce stress

#### 2. Livelihood water

- i. Repairing of existing bund
- ii. Construction of new bund
- iii. Desilting of existing bund
- iv. Provision of community farm ponds

For drinking water, domestic water and water for irrigation and other livelihood purposes, the measures required for area and drainage treatment are:

#### A. Drainage Treatment

- i. Providing gabion/Loose Boulder structure
- ii. Cement Nala Bund
- iii. Small diversion canal
- B. Area Treatment
  - i. Contour Trench/ Bund
  - ii. Old paddy field repair/Majagi
  - iii. Farm bund

# Kurlod Botoshi Model

- A water security planning exercise has been already done for Kurlod and Botoshi
- Kurlod and Botoshi are neighboring tribal villages in Mokhada block, Palghar district that face severe water scarcity, particularly from February till June
- Planning was done for **13 habitations** of Kurlod and Botoshi
- The project was executed in three phases, whereby,
  - Aim of phase I & II was to increase water availability in the area for drinking and livelihood purposes,
  - Phase III interventions were mainly related to area treatment.

# Pathardi village Case study

- Consists of 5 habitations
- All habitations are along one seasonal nala
- Drinking water sources are based on ground water
- Potential agricultural area

| Habitation Name            | Type of Stress           |
|----------------------------|--------------------------|
| Patilpada/Khalchi Pathardi | Accessibility            |
| Ramwadi/ Naviwadi          | No stress                |
| Bhairobachiwadi            | Availability             |
| Varchi Pathardi/ Pathardi  | Availability and quality |
| Dongarwadi                 | Availability             |



# Patilpada habitation


**Pinjal River** 

- Drinking water stress can be reduced by providing pumping solution on well 1 and construct a new sub surface bund
- Storage structure
  - Water shortage due to broken and leaky bund

| Potential agriculture<br>area | ~ 15 acres |  |  |
|-------------------------------|------------|--|--|
| Currently irrigable area      | < 1 acres  |  |  |
| Could be irrigated            | 2 acres    |  |  |





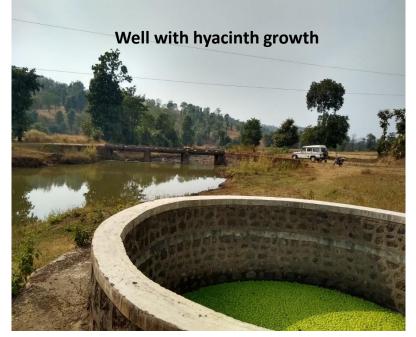


# Ramwadi/ Naviwadi habitation

- No agriculture area, habitations are in forest area
- One CNB used for domestic purpose






# Bhairobachiwadi habitation

- Habitations are scattered at two location
- Habitation-A have stress of availability
  - Currently using Habitation-B source that is at 550 m away
- Solution can be pumping water from B to A
- Community farm pond can be option for irrigation



# Varchi Pathardi/ Pathardi habitation

- Well 1 last till May but water quality issue though water used for drinking
- Well 2 also have quality issue



- Potential area and insufficient storage structure
  - 1-2 suitable location only
  - $\circ~$  Community farm pond



# Thank You...!!!

Questions, comments and suggestion

Contact: tdsc.iitb@gmail.com